

Центральные кондиционеры

внесена в Реестр по сертификации EUROVENT.

Серия ЗЭНН

Основные особенности конструкции

Оригинальная конструкция каркаса и панелей корпуса придает ему значительную прочность и стойкость к внешним воздействиям.

Герметичность

Данная конструкция обеспечивает герметичность корпуса, вероятно, самую высокую в отрасли для воздухообрабатывающих блоков стандартного исполнения.

Удобство обслуживания

Любая панель корпуса легко снимается снаружи, открывая быстрый и удобный доступ к внутренним компонентам. И наружные, и внутренние поверхности панелей гладкие и легко очищаются.

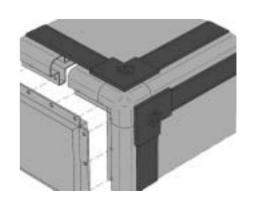
Долговечность

Центральный кондиционер изготавливается из высококачественной оцинкованной листовой стали без применения сварки, что гарантирует высокую коррозионную стойкость.

Для защиты от воздействия атмосферы, содержащей агрессивные компоненты (SO_2 , SO_3 , H_2SO_4), наружная и внутренняя поверхности корпуса окрашиваются методом катодного электроосаждения, который можно считать уникальным в отношении отделки воздухообрабатывающих блоков. Такое покрытие предохраняет корпус также от воздействия воздуха с высоким содержанием соленой воды. Агрегаты с данной отделкой поставляются по особому заказу.

Водяные баки и компоненты, контактирующие с распыленной водой, влажным воздухом или капельной влагой, могут быть изготовлены из различных конструкционных материалов и иметь различную отделку – по выбору заказчика.

Большая библиотека технической документации


https://splitsystema48.ru/instrukcii-po-ekspluatacii-kondicionerov.html

каталоги, инструкции, сервисные мануалы, схемы.

1

Цвет

Агрегаты, предназначенные для установки внутри помещения, окрашиваются в зеленый цвет: RAL 6033/6034. Агрегаты для наружной установки окрашиваются в серый цвет: RAL 7001, краска устойчива к ультрафиолетовому облучению.

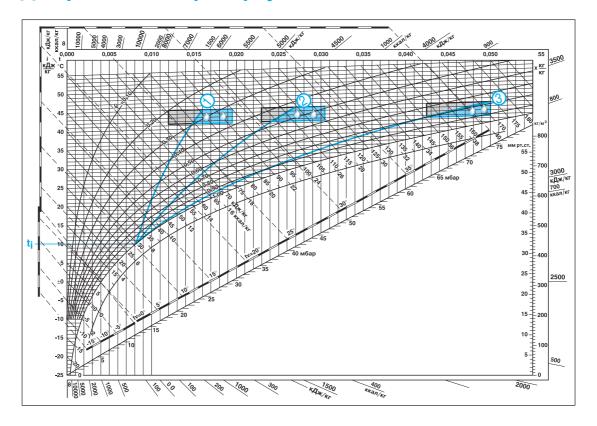
Базовая конструкция			39HH 100							39HH 100 CBF							
	25							2									
Пример: • внешние услови температура 32, относительная в ность 70% • Диапа тур вн воздуха, исключ образование кого ных поверхностях конденсат	i 0,000 0,005 0,010 0,015 0,020 0,025 0,03 KT 55 50 45 40 40 45 40 40 40 40 40 40 40 40 40 40 40 40 40							i 0,000 0,005 0,010 0,015 0,020 0,025 MADE TO ST.									
Коэффициент тепл			-	Г5		T4											
Тепловые мостики			Т	B4		ТВ3											
Утечки через неплотности	Стандартное исполнение	<0,027хР ^{0,65} (Класс A)							<0,027хР ^{0,65} (Класс A)								
корпуса** (л/с м²)	Специальное исполнение	<0,007хР ^{0,65} (Класс В)							<0,007хР ^{0,65} (Класс В)								
Коэффициент акустического	Гц	125	250	500	1000	2000	4000	125	250	500	1000	2000	4000				
поглощения	дБ	7	14	24	27	32	40	8	17	25	26	32	41				

^{*} Классификация по стандарту EN1886 и системе сертификации EUROVENT.

^{**} Данные получены при проведении заводских выборочных испытаний агрегатов.

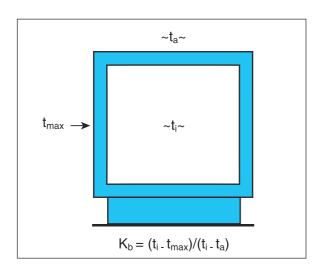
Агрегаты вертикальной компоновки

Конструкция агрегатов вертикальной компоновки (с воздушным потоком, направленным вниз либо вверх), в основном такая же, как у агрегатов горизонтальной компоновки.


Однако существует ряд отличий, обусловленных конструктивными и эксплуатационными ограничениями:

- панели доступа всегда расположены на узкой стороне агрегата;
- дверцы комплектуются безопасными стойками;
- длина секций, через которые осуществляется доступ к диффузорам, смесителям, фильтрам, теплообменникам, пароувлажнителям и регенеративным теплоутилизаторам, та же, что и у блоков горизонтальной компоновки;
- пленочные и форсуночные увлажнители в вертикальных агрегатах не применяются.

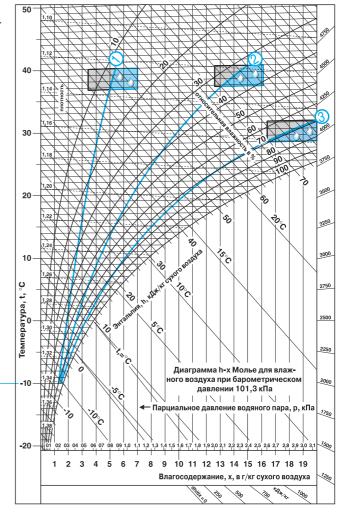
39HH 500				39HH 500 CBF							39HH 600								
						45							60						
i 0,000 0,005 0,010 0,015 0,020 0,025 KDx t C S S S S S S S S S S S S S S S S S S							i 0,000 0,005 0,010 0,015 0,020 0,025 0,000 0,005 0,010 0,015 0,020 0,025 0,000 0,00						RAJER 0,000 0,005 0,010 0,015 0,020 0,025						
T4					Т3						T1								
ТВ3					TB2							TB1							
<0,018 x P ^{0,65} (Класс A)					<0,018 x P ^{0,65} (Класс А)						<0.000 v D 055 (V 0)								
<	<0,009 x P ^{0,65} (Класс В) <0,003 x P ^{0,65} (Класс С)					<0,009 x P ^{0,65} (Класс В) <0,003 x P ^{0,65} (Класс С)						<0,003 x P ^{0,65} (Класс С)							
125	250	500	1000	2000	4000	125	250	500	1000	2000	4000	125	250	500	1000	2000	4000		
8	17	25	26	29	37	9	20	26	25	29	38	5	9	11	9	25	37		


Диаграмма подбора корпуса по интенсивности конденсации

ВНЕШНЯЯ КОНДЕНСАЦИЯ

Работа в летний период ($t_i = +10 \, {}^{\circ}\text{C}$)

- 39HH 100-500 панели с двойными стенками и теплоизолирующим слоем
- 2 39НН 100-500 без тепловых мостиков
- 3 39HH 600



ВНУТРЕННЯЯ КОНДЕНСАЦИЯ

Работа в зимний период ($t_i = -10 \, {}^{\circ}\text{C}$)

Наружная установка

- 39HH 100-500 панели с двойными стенками и теплоизолирующим слоем
- 2 39НН 100-500 без тепловых мостиков
- 3 39HH 600

Новый воздухообрабатывающий блок 39HH 600 фирмы Carrier – завод Holland Heating – окончательное решение проблемы конденсации

- Никаких проблем с конденсацией во время работы во влажной среде при низкой температуре внутреннего воздуха.
- Герметичность корпуса обеспечивает защиту от коррозии.
- Утечки воздуха через неплотности корпуса соответствуют классу С.
- Гигиеничное исполнение гладкие наружные и внутренние металлические поверхности легко очищаются
- Прочный корпус из алюминиевого каркаса и панелей, заполненных пеноматериалом.
- Специальные методы защиты от коррозии: нанесение краски методом электроосаждения и (или) использование внутренних элементов из нержавеющей стали, эпоксидное покрытие секции фильтров, поддон для конденсата из нержавеющей стали.

Опции

- Панели с изоляцией из минеральной ваты
- Звукоизоляционные панели повышенной эффективности
- Внутренние панели из нержавеющей стали
- Внутренние элементы конструкции из нержавеющей стали
- Компоненты из нержавеющей стали (вентиляторы, теплообменники, рамы фильтров)
- Регулирующий клапан на входе в вентилятор
- Устройство регулирования расхода воздуха в соответствии с фактической потребностью
- Дверь особой конструкции с минимальной теплопроводностью

Конструкция корпуса

Состав панели:

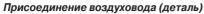
- жесткий пенопласт PIR, не содержащий хлорфторуглеродов,

плотность 40-50 кг/м³ Класс огнестойкости:

В1 по DIN4102 D

V2 πο BVD

CH F


M1+M2 по CSTB

B1 по ONORM B3 800 (A)

Теплопроводность 0,02 Вт/мК (DIN 52612)

- Листы из оцинкованной стали 2 x 0,6 мм

Отделка панели: слой полиэфирной краски толщиной 25 мкм с обеих сторон. Цвет RAL 9002

Конструкция двери (деталь)

Мастика

Производительоставляет засобой правовносить изменения в спецификацию любого изделия без предварительного уведомления. Издание XII-2001.